Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 14, 2020
Previous Article Next Article

General synthesis of hierarchical sheet/plate-like M-BDC (M = Cu, Mn, Ni, and Zr) metal–organic frameworks for electrochemical non-enzymatic glucose sensing

Author affiliations

Abstract

Two-dimensional metal–organic frameworks (2D MOFs) are an attractive platform to develop new kinds of catalysts because of their structural tunability and large specific surface area that exposes numerous active sites. In this work, we report a general method to synthesize benzene dicarboxylic acid (BDC)-based MOFs with hierarchical 3D morphologies composed of 2D nanosheets or nanoplates. In our proposed strategy, acetonitrile helps solvate the metal ions in solution and affects the morphology, while polyvinylpyrrolidone (PVP) serves as a shape-control agent to assist in the nucleation and growth of MOF nanosheets. PVP also acts as a depletion agent to drive the assembly of the hierarchical sheet/plate-like M-BDC under solvothermal conditions. Further, we also demonstrate the flexibility of the proposed method using numerous coordinating metal ions (M = Cu, Mn, Ni, and Zr). The potential of these MOFs for electrochemical glucose sensing is examined using the hierarchical sheet-like Ni-BDC MOF as the optimum sample. It drives the electrocatalytic oxidation of glucose over a wide range (0.01 mM to 0.8 mM) with high sensitivity (635.9 μA mM−1 cm−2) in the absence of modification with carbon or the use of conductive substrates. It also demonstrates good selectivity with low limit of detection (LoD = 6.68 μM; signal/noise = 3), and fast response time (<5 s).

Graphical abstract: General synthesis of hierarchical sheet/plate-like M-BDC (M = Cu, Mn, Ni, and Zr) metal–organic frameworks for electrochemical non-enzymatic glucose sensing

Back to tab navigation

Supplementary files

Article information


Submitted
07 Nov 2019
Accepted
12 Mar 2020
First published
12 Mar 2020

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2020,11, 3644-3655
Article type
Edge Article

General synthesis of hierarchical sheet/plate-like M-BDC (M = Cu, Mn, Ni, and Zr) metal–organic frameworks for electrochemical non-enzymatic glucose sensing

G. Gumilar, Y. V. Kaneti, J. Henzie, S. Chatterjee, J. Na, B. Yuliarto, N. Nugraha, A. Patah, A. Bhaumik and Y. Yamauchi, Chem. Sci., 2020, 11, 3644
DOI: 10.1039/C9SC05636J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements