Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Recent advances in continuous-flow organocatalysis for process intensification

Author affiliations


Chemistry in continuous-flow continues to attract attention from the community of synthetic organic chemists due to its now well-recognized benefits including, inter alia, quick reaction times, operational safety, rapid reaction screening/optimization, enhanced automation with possible addition of in-line reaction analysis, and easy scalability. Coupling of flow chemistry to enabling technologies (e.g. unconventional solvents, supported reagents or catalysts, microwave irradiation, photochemistry, inductive heating, microreactors) as well as to additive manufacturing (AM) technologies (i.e. 3D printing) gives additional advantages for throughput and automation, and besides this, unique opportunities are offered by compartmentalization, that allows multistep syntheses to occur reconciling incompatible reaction conditions. Based on all this, continuous-flow may itself be seen as an enabling technology which leads in the direction of process intensification meeting increasingly pressing sustainability issues (e.g. waste minimization, cost/energy reduction). As part of flow chemistry, organocatalysis represents an active research area under which there is large opportunity for re-optimizing long-standing reactions or inventing new transformations. Both homogeneous (soluble) and heterogeneous (insoluble) organic molecules have been used as catalysts for continuous-flow processing in either achiral or asymmetric fashion, any issue inherent to a homogeneous approach (high catalyst loading, difficult catalyst separation) being typically overcome with the use of heterogenized organocatalysts. This review is aimed at covering the progresses on organocatalysis in continuous-flow from 2016 to early 2020, with special attention paid to the comparison between batch and flow processes for each discussed transformation to substantiate the potential of flow technology for process intensification.

Graphical abstract: Recent advances in continuous-flow organocatalysis for process intensification

Back to tab navigation

Article information

26 Feb 2020
21 Apr 2020
First published
21 Apr 2020

React. Chem. Eng., 2020, Advance Article
Article type

Recent advances in continuous-flow organocatalysis for process intensification

C. De Risi, O. Bortolini, A. Brandolese, G. Di Carmine, D. Ragno and A. Massi, React. Chem. Eng., 2020, Advance Article , DOI: 10.1039/D0RE00076K

Social activity

Search articles by author