Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 29, 2020, Issue in Progress
Previous Article Next Article

A proof-of-concept, two-tiered approach for ricin detection using ambient mass spectrometry

Author affiliations

Abstract

Ricin is a naturally occurring, highly potent toxin native to castor bean plants that has recently been used as a biological weapon in cases of bioterrorism and suicide attempts. Difficulties with direct detection arise from large heterogeneities in ricin glycosylation, which leads to markedly different bioactivity, and the fact that carefully developed and laborious sample preparation steps are required to maintain the activity of the protein during analysis. Herein, we present an alternative, two-tiered approach to identify the presence of ricin by detecting ricinoleic acid and ricinine, which are co-extracted with the protein. This direct mass spectrometric-based technique takes as little as 2 minutes, and we determined its sensitivity to be in the parts-per-trillion range. Our method is applicable to paper substrates from suspected contaminated envelopes and biofluids from at-risk patients. The fact that prior sample preparations are not needed in this procedure means that analysis can be performed in the field for emergency cases.

Graphical abstract: A proof-of-concept, two-tiered approach for ricin detection using ambient mass spectrometry

Back to tab navigation

Supplementary files

Article information


Submitted
13 Apr 2020
Accepted
22 Apr 2020
First published
30 Apr 2020

This article is Open Access

RSC Adv., 2020,10, 17045-17049
Article type
Paper

A proof-of-concept, two-tiered approach for ricin detection using ambient mass spectrometry

D. J. Swiner, G. R. Durisek, H. Osae and A. K. Badu-Tawiah, RSC Adv., 2020, 10, 17045
DOI: 10.1039/D0RA03317K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements