Issue 31, 2020

Facet-, composition- and wavelength-dependent photocatalysis of Ag2MoO4

Abstract

Faceted β-Ag2MoO4 microcrystals are prepared by controlled nucleation and growth in diethylene glycol (DEG) or dimethylsulfoxide (DMSO). Both serve as solvents for the liquid-phase synthesis and surface-active agents for the formation of faceted microcrystals. Due to its reducing properties, truncated β-Ag2MoO4@Ag octahedra are obtained in DEG. The synthesis in DMSO allows avoiding the formation of elemental silver and results in β-Ag2MoO4 cubes and cuboctahedra. Due to its band gap of 3.2 eV, photocatalytic activation of β-Ag2MoO4 is only possible under UV-light. To enable β-Ag2MoO4 for absorption of visible light, silver-coated β-Ag2MoO4@Ag and Ag2(Mo0.95Cr0.05)O4 with partial substitution of [MoO4]2− by [CrO4]2− were prepared, too. The photocatalytic activity of all the faceted microcrystals (truncated octahedra, cubes, cuboctahedra) and compositions (β-Ag2MoO4, β-Ag2MoO4@Ag, β-Ag2(Mo0.95Cr0.05)O4) is compared with regard to the photocatalytic decomposition of rhodamine B and the influence of the respective faceting, composition and wavelength.

Graphical abstract: Facet-, composition- and wavelength-dependent photocatalysis of Ag2MoO4

Supplementary files

Article information

Article type
Paper
Submitted
01 Apr 2020
Accepted
07 May 2020
First published
14 May 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 18377-18383

Facet-, composition- and wavelength-dependent photocatalysis of Ag2MoO4

L. Warmuth, C. Ritschel and C. Feldmann, RSC Adv., 2020, 10, 18377 DOI: 10.1039/D0RA02953J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements