Issue 35, 2020, Issue in Progress

Single-component and competitive adsorption of tetracycline and Zn(ii) on an NH4Cl-induced magnetic ultra-fine buckwheat peel powder biochar from water: studies on the kinetics, isotherms, and mechanism

Abstract

Single-component and competitive adsorption of tetracycline (TC) and Zn(II) on an NH4Cl-induced magnetic ultra-fine buckwheat peel powder biochar (NH4Cl-BHP-char/Fe3O4) was investigated in batch experiments. NH4Cl-BHP-char/Fe3O4 exhibited a large surface area of 1119.097 m2 g−1 and a total pore volume of 0.139 cm3 g−1 and was easily separated from aqueous solution using a magnet. Also, adsorption was endothermic, spontaneous, and highly pH-dependent. The optimum pH of the single-component adsorption of TC and Zn(II) was 4.0 and 6.5, respectively, and the optimum pH of co-adsorption was 6.0. The kinetics studies showed the prepared biochar could be rapidly adsorbed within 60 min, and chemical adsorption was dominant. For single-component adsorption, the maximum adsorption capacities of TC and Zn(II) were 106.38 and 151.52 mg g−1, respectively, and they underwent monolayer adsorption on the biochar surface. Moreover, for competitive adsorption, maximum TC and Zn(II) adsorption capacities of 126.58 and 357.14 mg g−1 were achieved. Both film diffusion and intra-particle diffusion were found to be significant processes to facilitate adsorption. TC and Zn(II) promoted the adsorption of each other. The proposed biochar could be used repeatedly for at least four cycles. All these results demonstrated that developed NH4Cl-BHP-char/Fe3O4 was regarded as a low-cost alternative adsorbent to remove the heavy metal ions and antibiotic pollutants from water or wastewater.

Graphical abstract: Single-component and competitive adsorption of tetracycline and Zn(ii) on an NH4Cl-induced magnetic ultra-fine buckwheat peel powder biochar from water: studies on the kinetics, isotherms, and mechanism

Supplementary files

Article information

Article type
Paper
Submitted
13 Mar 2020
Accepted
20 May 2020
First published
28 May 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 20427-20437

Single-component and competitive adsorption of tetracycline and Zn(II) on an NH4Cl-induced magnetic ultra-fine buckwheat peel powder biochar from water: studies on the kinetics, isotherms, and mechanism

T. Ai, X. Jiang, Q. Liu, L. Lv and S. Dai, RSC Adv., 2020, 10, 20427 DOI: 10.1039/D0RA02346A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements