Issue 5, 2020

Reply to the ‘Comment on “Quantum interference effects in biphenyl dithiol for gas detection”’ by A. Grigoriev, H. Jafri and K. Leifer, RSC Adv., 2020, 10, DOI: 10.1039/C9RA00451C

Abstract

The Comment on our publication [Prasongkit et al., RSC Adv., 2016, 64, 59299] is puzzling since it is well known that biphenyl is fairly non-reactive. Hence, it's not surprising we have low binding energies when the gas molecules were adsorbed on biphenyl dithiol (BPDT). The large binding energy of NO2 chemisorbed onto BPDT (∼2.04 eV) in the Comment conflicts with existing theoretical and experimental evidence. Grigoriev et al. have attempted to compare their results to our findings, employing different approximation schemes under the density functional theory (DFT) framework. Here, the effect of taking into account van der Waals (vdW) interactions upon the adsorption mechanism of small aromatic molecules has been discussed.

Associated articles

Article information

Article type
Comment
Submitted
18 Aug 2019
Accepted
28 Nov 2019
First published
14 Jan 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 2560-2561

Reply to the ‘Comment on “Quantum interference effects in biphenyl dithiol for gas detection”’ by A. Grigoriev, H. Jafri and K. Leifer, RSC Adv., 2020, 10, DOI: 10.1039/C9RA00451C

J. Prasongkit, RSC Adv., 2020, 10, 2560 DOI: 10.1039/C9RA06459A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements