Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



A semipinacol rearrangement of vinylogous α-ketol cocatalyzed by a cinchona-based primary amine and N-Boc-phenylglycines: mechanisms, roles of catalysts and the origin of enantioselectivity

Author affiliations

Abstract

Spirocyclic diketones with chiral all-carbon quaternary stereocenters constructed via a semipinacol rearrangement of vinylogous α-ketol cocatalyzed by a cinchona-based primary amine and Brønsted acids such as N-Boc-phenylglycine can be obtained with good enantiocontrol. Two different catalytic systems including cinchona-based primary amine/N-Boc-L-phenylglycine and cinchona-based primary amine/N-Boc-D-phenylglycine can lead to the same major products but with different enantioselectivities. To uncover the detailed reaction mechanism of the semipinacol rearrangement, the roles of catalysts and the origin of enantioselectivity, quantum mechanical calculations were performed. The reaction pathways investigated show that the reactions proceed via the steps of complexation, nucleophilic addition, dehydration, carbon atom migration, enamine–imine tautomerization, imine hydrolysis, Walden inversion and catalyst regeneration. Analyses of noncovalent interactions and quantum theory of atoms in molecules were employed to elucidate the intermolecular interactions occurring between the catalysts and reactants and their roles. The distortion/interaction models were used to reveal the origin of enantioselectivity by analyzing the transition state in the enantioselectivity-determining step of carbon atom migration. The results show that the cinchona-based primary amine plays a crucial role in determining the enantioselectivity while the Brønsted acid additives influence the enantioselectivity to some extent. It is expected that the results would shed light on the organocatalytic semipinacol rearrangement, the roles of the co-catalytic system and the origin of enantioselectivity.

Graphical abstract: A semipinacol rearrangement of vinylogous α-ketol cocatalyzed by a cinchona-based primary amine and N-Boc-phenylglycines: mechanisms, roles of catalysts and the origin of enantioselectivity

Back to tab navigation

Supplementary files

Article information


Submitted
27 Apr 2020
Accepted
04 Jun 2020
First published
05 Jun 2020

Org. Chem. Front., 2020, Advance Article
Article type
Research Article

A semipinacol rearrangement of vinylogous α-ketol cocatalyzed by a cinchona-based primary amine and N-Boc-phenylglycines: mechanisms, roles of catalysts and the origin of enantioselectivity

C. Yan, F. Yang, K. Lu, X. Yang, P. Zhou and X. Shao, Org. Chem. Front., 2020, Advance Article , DOI: 10.1039/D0QO00506A

Social activity

Search articles by author

Spotlight

Advertisements