Jump to main content
Jump to site search

Issue 4, 2020
Previous Article Next Article

Rhodium-catalyzed ene-cycloisomerization of allylic-sulfide-tethered alkylidenecyclopropanes: DFT analysis of origins of regio- and diastereo-selectivities

Author affiliations

Abstract

Rhodium-catalyzed ene-cycloisomerization of allylic-sulfide-tethered alkylidenecyclopropanes (ACPs) is an efficient method for late-transition-metal-mediated β-sulfide elimination. The density functional theory (DFT) method was used to investigate the mechanism, and regio- and diastereo-selectivities of this type of reaction. The computational results showed that the unique control of the regio- and diastereo-selectivities of this reaction can be attributed to an unconventional reaction mechanism. Instead of the commonly accepted mechanism, which involves initial ring opening of the ACP, carbometallation, β-sulfide elimination, and thioether migration, the Rh(I)-catalyzed ene-cycloisomerization reaction occurs via activation of the ACP double bond, β-sulfide elimination, and the simultaneous thioether transfer and ring opening of the cyclopropyl group. Importantly, the calculation results explain why initial ACP double-bond activation was achieved with a Rh(I) catalyst but not with Pd(0) and Ni(0) catalysts. This mechanism does not occur with Pd(0) and Ni(0) catalysts because of steric effects.

Graphical abstract: Rhodium-catalyzed ene-cycloisomerization of allylic-sulfide-tethered alkylidenecyclopropanes: DFT analysis of origins of regio- and diastereo-selectivities

Back to tab navigation

Supplementary files

Article information


Submitted
26 Sep 2019
Accepted
18 Jan 2020
First published
20 Jan 2020

Org. Chem. Front., 2020,7, 678-688
Article type
Research Article

Rhodium-catalyzed ene-cycloisomerization of allylic-sulfide-tethered alkylidenecyclopropanes: DFT analysis of origins of regio- and diastereo-selectivities

T. Wang, S. Lv, X. Guo, Z. Li and J. Li, Org. Chem. Front., 2020, 7, 678
DOI: 10.1039/C9QO01187K

Social activity

Search articles by author

Spotlight

Advertisements