Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 7, 2020
Previous Article Next Article

Mn dopant induced high-valence Ni3+ sites and oxygen vacancies for enhanced water oxidation

Author affiliations

Abstract

Cost effective and durable electrocatalysts are urgently required in the oxygen evolution reaction (OER), a critical process in electrochemical energy storage and conversion devices. Conventional catalysts involve the alloying of rare elements, limiting their wide applications. In this paper, Mn doped ultrathin Ni–Fe–O nanosheets are prepared and demonstrated as an efficient OER catalyst. Mn dopant induces the generation of high valence state Ni3+ sites and an increased oxygen vacancy concentration in the Mn–Ni–Fe–O nanosheets, thus achieving enhanced OER kinetics. Experimentation of various dopant concentrations reveals that 2 wt% Mn doping is optimal for OER catalytic performance, achieving low overpotentials of 225 mV at a current density of 10 mA cm−2 and 297 mV at 100 mA cm−2, respectively, a small Tafel slope of 38.2 mV dec−1, and excellent stability in an alkaline medium, which is superior to pristine Ni–Fe–O nanosheets and the state-of-the-art RuO2 catalyst.

Graphical abstract: Mn dopant induced high-valence Ni3+ sites and oxygen vacancies for enhanced water oxidation

Back to tab navigation

Supplementary files

Article information


Submitted
06 May 2020
Accepted
28 May 2020
First published
28 May 2020

Mater. Chem. Front., 2020,4, 1993-1999
Article type
Research Article

Mn dopant induced high-valence Ni3+ sites and oxygen vacancies for enhanced water oxidation

Y. Zhang, Z. Zeng and D. Ho, Mater. Chem. Front., 2020, 4, 1993
DOI: 10.1039/D0QM00300J

Social activity

Search articles by author

Spotlight

Advertisements