Jump to main content
Jump to site search


NH4V3O8·0.5H2O nanobelts with intercalated water molecules as a high performance zinc ion battery cathode

Author affiliations

Abstract

Aqueous rechargeable Zn-ion batteries (ARZIBs) have been attracting huge attention recently, where V-based materials with host layer structures and fast channels enable the efficient diffusion of metal ions, leading to excellent properties of Zn2+ storage. Several ammonium vanadates have been explored as potential cathodes, and their performance in ARZIBs varies considerably. Herein, we choose H2O-intercalated NH4V3O8 (NH4V3O8·0.5H2O) nanobelts, which are synthesized by a low-temperature hydrothermal process, and reveal that the electrochemical performance of NH4V3O8 is strongly enhanced by the H2O molecules intercalated in the layer structure. Indeed, the NH4V3O8·0.5H2O nanobelts exhibit a super-high capacity of 423 mA h g−1 at 0.1 A g−1, together with long-term stability (50.1% retention after 1000 cycles) at 1 A g−1. The Zn//NH4V3O8·0.5H2O battery thus assembled delivers a high energy density of 353 W h kg−1 at a power density of 114 W kg−1, comparing favorably with most of the state-of-the-art V-based cathode materials reported for ARZIBs. As a promising cathode candidate for aqueous batteries, the reversible (de)intercalation of Zn2+ in the H2O-intercalated NH4V3O8·0.5H2O gives rise to the formation of Zn3(OH)2V2O7·2H2O, which helps retain the desired long-term stability.

Graphical abstract: NH4V3O8·0.5H2O nanobelts with intercalated water molecules as a high performance zinc ion battery cathode

Back to tab navigation

Supplementary files

Article information


Submitted
03 Feb 2020
Accepted
22 Feb 2020
First published
24 Feb 2020

Mater. Chem. Front., 2020, Advance Article
Article type
Research Article

NH4V3O8·0.5H2O nanobelts with intercalated water molecules as a high performance zinc ion battery cathode

H. Jiang, Y. Zhang, Z. Pan, L. Xu, J. Zheng, Z. Gao, T. Hu, C. Meng and J. Wang, Mater. Chem. Front., 2020, Advance Article , DOI: 10.1039/D0QM00051E

Social activity

Search articles by author

Spotlight

Advertisements