Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.



Element table of TM-substituted polyoxotungstates for direct electrocatalytic reduction of nitric oxide to ammonia: a DFT guideline for experiments

Author affiliations

Abstract

The electrochemical NO reduction (NOER) is one of the most promising routes for ammonia synthesis and for simultaneously removing the air pollutant, NO. However, the current electro-catalysts are mainly metal based, and the search for new and cost-efficient NOER catalysts is in the pipeline. Polyoxometalates, a class of metal–oxide clusters, exhibiting unique electrochemical redox behavior, have been widely applied to many electrocatalytic processes. In this work, density functional theory (DFT) calculations were adopted to investigate the NOER performance of a series of transition metal-substituted (TMPOMs, FeII ∼ CuII, RuII ∼ AgI, OsII ∼ AuI) heteropolytungstates. Firstly, we take the highly active SiW11FeII catalyst reported in experiments as an example to investigate its detailed NOER mechanism, and thus provide some qualitative criteria for screening potential new NOER catalysts. The *NHO and *NHOH intermediates are confirmed based on their lower energies compared to *NOH and *NH2O, respectively. The high activity and ammonia selectivity of SiW11FeII are dominated by four factors: (i) a moderate NO adsorption ability, (ii) an acceptable N–O bond activation barrier (ΔGb = 0.65 eV) at room temperature, (iii) low onset potential for the potential-limiting step (ca. −0.21 V), and (iv) effective suppression of the competitive HER and N2O formation reaction. Inspired by this, NiII-, CoII-, CuII-, PdII-, PtII-, and AgI-substituted heteropolytungstates are identified as candidate electrocatalysts for application in the NOER through a comprehensive comparison with the SiW11FeII case. Particularly, SiW11NiII was selected as the most optimal with an extremely low ΔGb of only 0.07 eV for the *NO → *NHO step. It is suggested that the high electrocatalytic activity of SiW11NiII originates from its high reduction ability to accept electrons in the electrocatalytic process, and the low basicity strength of O sites to promote the transfer of H. The present work provides an expansion of the POMs’ family in the field of NOER, and ultimately facilitates the designing of nitrogen-cycle catalysts for targeted environmental and synthesis applications.

Graphical abstract: Element table of TM-substituted polyoxotungstates for direct electrocatalytic reduction of nitric oxide to ammonia: a DFT guideline for experiments

Back to tab navigation

Supplementary files

Article information


Submitted
21 Aug 2020
Accepted
30 Sep 2020
First published
01 Oct 2020

Inorg. Chem. Front., 2020, Advance Article
Article type
Research Article

Element table of TM-substituted polyoxotungstates for direct electrocatalytic reduction of nitric oxide to ammonia: a DFT guideline for experiments

Z. Lang, J. Miao, H. Tan, Z. Su, Y. Li and Z. Zheng, Inorg. Chem. Front., 2020, Advance Article , DOI: 10.1039/D0QI01014F

Social activity

Search articles by author

Spotlight

Advertisements