Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Keggin-type polyoxometalate/thiospinel octahedron heterostructures for photoelectronic devices

Author affiliations

Abstract

All-inorganic heterostructures have attracted intense interest for new energy and environmental applications recently, especially in photoelectronic devices. Herein, we firstly obtain a novel CoIn2S4 thiospinel octahedron through a simple one-step hydrothermal synthesis method. On this basis we further propose a strategy to prepare all-inorganic heterostructures (NH4)4CoII[CoIIW12O40]·20H2O/CoIn2S4 (CoW12-n/CoIn2S4, where n represents the molar number of CoW12) through doping Keggin-type polyoxometalates (POMs). The addition of POMs can alleviate the cross-growth of the CoIn2S4 octahedron and increase the specific surface area and the number of exposed active sites of the heterostructures. What's more, we investigate the electrocatalytic triiodide reduction properties of the heterostructures. Electrochemical measurements show that POM contents have an obvious influence on the catalytic activity of this heterostructure catalyst. The CoW12-0.3/CoIn2S4 heterostructures present the best catalytic performance and the lowest charge transfer resistance. Consequently, the dye-sensitized solar cells (DSSCs) with CoW12-0.3/CoIn2S4 heterostructures as a counter electrode (CE) show the highest photovoltaic conversion efficiency (PCE) of up to 6.79%, superior to that of the Pt CE (5.83%). This work not only provides an approach for designing composites for efficient electrocatalytic triiodide reduction, but also represents a further step towards the application of all-inorganic heterostructures in photoelectronic devices.

Graphical abstract: Keggin-type polyoxometalate/thiospinel octahedron heterostructures for photoelectronic devices

Back to tab navigation

Supplementary files

Article information


Submitted
30 Mar 2020
Accepted
22 May 2020
First published
22 May 2020

Inorg. Chem. Front., 2020, Advance Article
Article type
Research Article

Keggin-type polyoxometalate/thiospinel octahedron heterostructures for photoelectronic devices

P. He, X. Li, T. Wang, W. Chen, H. Zhang and W. Chen, Inorg. Chem. Front., 2020, Advance Article , DOI: 10.1039/D0QI00371A

Social activity

Search articles by author

Spotlight

Advertisements