Issue 42, 2020

Suzuki–Miyaura catalyst-transfer polycondensation of triolborate-type fluorene monomer: toward rapid access to polyfluorene-containing block and graft copolymers from various macroinitiators

Abstract

In this study, we demonstrated that the Suzuki–Miyaura catalyst transfer polycondensation (SCTP) of the triolborate-type fluorene monomer, viz. potassium 2-(7-bromo-9,9-dihexyl-9H-fluorene-2-yl)triolborate, can be an efficient and versatile approach to the precise synthesis of poly[2,7-(9,9-dihexylfluorene)]s (PFs) and PF-containing block and graft copolymers. SCTP of the triolborate-type monomer proceeded rapidly in a THF/H2O mixed solvent at −10 °C using an iodobenzene derivative/Pd2(dba)3·CHCl3/t-Bu3P initiating system. Kinetic and post-polymerization experiments revealed that SCTP proceeded via the chain-growth and living polymerization mechanisms. The most important feature of the present polymerization system is that only a small amount of base and water can sufficiently promote the reaction. The well-controlled nature of this polymerization system enabled the synthesis of high-molecular-weight PFs (Mn = 5–69 kg mol−1) with narrow dispersity (ĐM = 1.14–1.38) and α-end-functionalized PFs. Most importantly, PF-containing block and graft copolymers were successfully synthesized, beginning with various iodobenzene-functionalized macroinitiators; this was difficult to achieve by the conventional SCTP of pinacolboronate-type fluorene monomer. One of the key factors for the successful block and graft copolymer syntheses is the reduced water content in the polymerization medium, which suppressed the potential precipitation/aggregation of the macroinitiators.

Graphical abstract: Suzuki–Miyaura catalyst-transfer polycondensation of triolborate-type fluorene monomer: toward rapid access to polyfluorene-containing block and graft copolymers from various macroinitiators

Supplementary files

Article information

Article type
Paper
Submitted
08 Aug 2020
Accepted
09 Oct 2020
First published
09 Oct 2020

Polym. Chem., 2020,11, 6832-6839

Author version available

Suzuki–Miyaura catalyst-transfer polycondensation of triolborate-type fluorene monomer: toward rapid access to polyfluorene-containing block and graft copolymers from various macroinitiators

S. Kobayashi, K. Fujiwara, D. Jiang, T. Yamamoto, K. Tajima, Y. Yamamoto, T. Isono and T. Satoh, Polym. Chem., 2020, 11, 6832 DOI: 10.1039/D0PY01127D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements