Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Laponite®-based colloidal nanocomposites prepared by RAFT-mediated surfactant-free emulsion polymerization: the role of non-ionic and anionic macroRAFT polymers in stability and morphology control

Author affiliations

Abstract

The synthesis of Laponite®-based composite latexes by reversible addition-fragmentation chain transfer (RAFT)-mediated surfactant-free emulsion polymerization is described. RAFT homopolymers and copolymers (macroRAFT agents) comprising acrylic acid (AA), poly(ethylene glycol) (PEG) segments and n-butyl acrylate (BA) repeating units were adsorbed onto exfoliated Laponite® in aqueous dispersion, and subsequently chain extended by methyl methacrylate and BA to form colloidal nanocomposites. The high hydrophilicity of PAA macroRAFT agents led to unstable latexes as polymerization took place mainly in the aqueous phase. Differently, PEG-based RAFT copolymers adsorbed more strongly onto Laponite® and favored morphology control. The free macroRAFT chains engaged preferably in the stabilization of the hybrid structures, rather than in the formation of free latex particles, resulting primarily in a Janus morphology. The presence of BA units in the macroRAFT structure helped further in confining the polymerization on the clay surface and enabled the morphology of the particles to be tuned resulting in the formation of dumbbell or sandwich-like structures. These results show that the parameters driving the competing mechanisms related to the polymerization locus, such as the presence of free macroRAFTs, the affinity between macroRAFTs and clay and the adequate hydrophilic–hydrophobic balance within the macroRAFT structure, are key for assuring both the stabilization of the nanocomposite particles and the control of their morphology.

Graphical abstract: Laponite®-based colloidal nanocomposites prepared by RAFT-mediated surfactant-free emulsion polymerization: the role of non-ionic and anionic macroRAFT polymers in stability and morphology control

Back to tab navigation

Supplementary files

Article information


Submitted
16 May 2020
Accepted
19 Jun 2020
First published
25 Jun 2020

This article is Open Access

Polym. Chem., 2020, Advance Article
Article type
Paper

Laponite®-based colloidal nanocomposites prepared by RAFT-mediated surfactant-free emulsion polymerization: the role of non-ionic and anionic macroRAFT polymers in stability and morphology control

T. C. Chaparro, R. D. Silva, P. Dugas, F. D'Agosto, M. Lansalot, A. Martins dos Santos and E. Bourgeat-Lami, Polym. Chem., 2020, Advance Article , DOI: 10.1039/D0PY00720J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements