Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Accessible and sustainable Cu(0)-mediated radical polymerisation for the functionalisation of surfaces

Author affiliations

Abstract

Polymer brushes have great potential for use in functionalising surfaces due to their chemical and mechanical robustness, and wide variety of useful properties including antibacterial and antifouling behaviour. One such grafted polymer of interest is poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMETAC), shown to have excellent antibacterial behaviour due to the presence of quaternary ammonium chloride groups (QACs). Previous studies have shown that increasing the density of QACs increases the efficacy of these surfaces, therefore the production of thick PMETAC brushes is highly desirable. Cu(0)-mediated radical polymerisation (CuRP) offers a simple route to the production of these surfaces. A movement towards more sustainable chemistry has led to research into polymerisations in environmentally benign solvent, with focus placed on recycled and easily accessible catalysts. In this study, the growth of PMETAC brushes up to 300 nm dry thickness (∼ 425 nm water-swollen thickness) is demonstrated, thicker than any previous report we have found for this polymer brush. Furthermore, tap water is used as a cheap and readily available solvent, with a catalyst derived from copper wire. The use of copper wire, compared to the commonly used CuBr2 catalyst, leads to thicker coatings which also display a lower swelling ratio, implying an increased grafting density. The protocol can be continuously cycled over a 7-day period without changing the monomer solution or catalyst, with numerous wafers being functionalised over the time period with no significant reduction in grafted amount. In addition, the polymerisation can be carried out in ambient (non-inert) conditions with no degassing steps, again without with significant detriment to grafting.

Graphical abstract: Accessible and sustainable Cu(0)-mediated radical polymerisation for the functionalisation of surfaces

Back to tab navigation

Supplementary files

Article information


Submitted
08 Apr 2020
Accepted
18 May 2020
First published
19 May 2020

This article is Open Access

Polym. Chem., 2020, Advance Article
Article type
Paper

Accessible and sustainable Cu(0)-mediated radical polymerisation for the functionalisation of surfaces

O. F. Uttley, L. A. Brummitt, S. D. Worrall and S. Edmondson, Polym. Chem., 2020, Advance Article , DOI: 10.1039/D0PY00516A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements