Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Turning natural δ-lactones to thermodynamically stable polymers with triggered recyclability

Author affiliations

Abstract

To extend the use of naturally occurring substituted δ-lactones within the polymer field, their commonly low ceiling temperature and thereby challenging equilibrium behavior needs to be addressed. A synthetic strategy to control the polymerization thermodynamics was therefore developed. This was achieved by copolymerizing δ-decalactone (δDL) with either ε-decalactone (εDL) or ε-caprolactone (εCL) at room temperature (RT), with diphenyl phosphate (DPP) as catalyst. The thermodynamic stability of PδDL-co-εDL and PδDL-co-εCL increased with increased comonomer ratio in the feed, to 10% and 30% monomeric δDL, respectively, at 110 °C. This is in contrast to the PδDL homopolymer, which under the same conditions depolymerized to 70% monomeric δDL at equilibrium. The copolymers’ macromolecular structure, originating from the copolymerization kinetics, was found to be the crucial factor to mitigate δDLs equilibrium behavior. To close the loop, designing materials for a circular economy, the recycling of PδDL-co-εDL was demonstrated, by reaction with benzyl alcohol (BnOH) as an external nucleophile, leading to cyclic monomers or dimers with BnOH at high yield.

Graphical abstract: Turning natural δ-lactones to thermodynamically stable polymers with triggered recyclability

Back to tab navigation

Supplementary files

Article information


Submitted
17 Feb 2020
Accepted
10 Apr 2020
First published
14 Apr 2020

This article is Open Access

Polym. Chem., 2020, Advance Article
Article type
Paper

Turning natural δ-lactones to thermodynamically stable polymers with triggered recyclability

L. Cederholm, P. Olsén, M. Hakkarainen and K. Odelius, Polym. Chem., 2020, Advance Article , DOI: 10.1039/D0PY00270D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements