The pigment binding behaviour of water-soluble chlorophyll protein (WSCP)†
Abstract
Water-soluble chlorophyll proteins (WSCPs) are homotetrameric proteins that bind four chlorophyll (Chl) molecules in identical binding sites, which makes WSCPs a good model to study protein–pigment interactions. In a previous study, we described preferential binding of Chl a or Chl b in various WSCP versions. Chl b binding is preferred when a hydrogen bond can be formed between the C7 formyl of the chlorin macrocycle and the protein, whereas Chl a is preferred when Chl b binding is sterically unfavorable. Here, we determined the binding affinities and kinetics of various WSCP versions not only for Chl a/b, but also for chlorophyllide (Chlide) a/b and pheophytin (Pheo) a/b. Altered KD values are responsible for the Chl a/b selectivity in WSCP whereas differences in the reaction kinetics are neglectable in explaining different Chl a/b preferences. WSCP binds both Chlide and Pheo with a lower affinity than Chl, which indicates the importance of the phytol chain and the central Mg2+ ion as interaction sites between WSCP and pigment. Pheophorbide (Pheoide), lacking both the phytol chain and the central Mg2+ ion, can only be bound as Pheoide b to a WSCP that has a higher affinity for Chl b than Chl a, which underlines the impact of the C7 formyl-protein interaction. Moreover, WSCP was able to bind protochlorophyllide and Mg-protoporphyrin IX, which suggests that neither the size of the π electron system of the macrocycle nor the presence of a fifth ring at the macrocycle notably affect the binding to WSCP. WSCP also binds heme to form a tetrameric complex, suggesting that heme is bound in the Chl-binding site.