Issue 40, 2020

Using engineered 6-O-sulfotransferase to improve the synthesis of anticoagulant heparin

Abstract

Heparan sulfate (HS) and heparin are sulfated polysaccharides exhibiting diverse physiological functions. HS 6-O-sulfotransferase (6-OST) is a HS biosynthetic enzyme that transfers a sulfo group to the 6-OH position of glucosamine to synthesize HS with desired biological activities. Chemoenzymatic synthesis is a widely adopted method to obtain HS oligosaccharides to support biological studies. However, this method is unable to synthesize all possible structures due to the specificity of natural enzymes. Here, we report the use of an engineered 6-OST to achieve fine control of the 6-O-sulfation. Unlike wild type enzyme, the engineered 6-OST only sulfates the non-reducing end glucosamine residue. Utilizing the engineered enzyme and wild type enzyme, we successfully completed the synthesis of five hexasaccharides and one octasaccharide differing in 6-O-sulfation patterns. We also identified a hexasaccharide construct as a new anticoagulant drug candidate. Our results demonstrate the feasibility of using an engineered HS biosynthetic enzyme to prepare HS-based therapeutics.

Graphical abstract: Using engineered 6-O-sulfotransferase to improve the synthesis of anticoagulant heparin

Supplementary files

Article information

Article type
Paper
Submitted
22 Aug 2020
Accepted
27 Sep 2020
First published
29 Sep 2020

Org. Biomol. Chem., 2020,18, 8094-8102

Using engineered 6-O-sulfotransferase to improve the synthesis of anticoagulant heparin

L. Yi, Y. Xu, A. M. Kaminski, X. Chang, V. Pagadala, M. Horton, G. Su, Z. Wang, G. Lu, P. Conley, Z. Zhang, L. C. Pedersen and J. Liu, Org. Biomol. Chem., 2020, 18, 8094 DOI: 10.1039/D0OB01736A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements