Mesoporous silica coated silica–titania spherical particles: from impregnation to core–shell formation†
Abstract
The coating of solid surfaces with inorganic materials is a promising approach not only to impart various functionalities but also to modify physicochemical properties that are affected by the geometry/structure of the coating. In this study, a silica–hexadecyltrimethylammonium (silica–CTA) hybrid layer was deposited on monodispersed spherical particles composed of titania and octadecylamine (titania–ODA) by a sol–gel reaction of tetraethoxysilane in aqueous CTA/ammonia/methanol solution. The formation of the coating was confirmed by SEM and TEM observations. The coating thickness varied from a few nm to 100 nm depending on the Si/Ti ratio. We found that Si/Ti = 0.68 resulted in the formation of microporous silica–titania particles with the pore size of 0.7 nm as revealed by nitrogen adsorption/desorption measurements. Because the titania–ODA particles can be converted to mesoporous titania particles after removing ODA by acid/base treatment, the silica species can be impregnated into the titania particles and replace ODA under basic conditions. By increasing the Si/Ti molar ratio up to 1.4, silica–titania particles with non-porous structures were obtained. An amorphous to anatase transition occurred at around 800 °C, indicating the complete impregnation of silica inside the titania particles. Further increases of the Si/Ti molar ratio (to 3.4 and 6.8) led to the formation of the silica–CTA shell on the core particles, and the shell was converted to mesoporous silica layers with a pore size of 2 nm after calcination at 550 °C for 5 h. Non-linear control of the pore size/structure is presented for the first time; this will be useful for the precise design of diverse hybrid materials for optical, catalytic and biomedical applications.
 
                



 Please wait while we load your content...
                                            Please wait while we load your content...
                                        