Issue 1, 2021

Room temperature synthesis of low-dimensional rubidium copper halide colloidal nanocrystals with near unity photoluminescence quantum yield

Abstract

Metal lead halide perovskite nanocrystals have emerged as promising candidates for optoelectronic applications. However, the inclusion of toxic lead is a major concern for the commercial viability of these materials. Herein, we introduce a new family of non-toxic reduced dimension Rb2CuX3 (X = Br, Cl) colloidal nanocrystals with one-dimensional crystal structure consisting [CuX4]3− ribbons isolated by Rb+ cations. These nanocrystals were synthesised using a room-temperature method under ambient conditions, which makes them cost effective and scalable. Phase purity quantification was confirmed by Rietveld refinement of powder X-ray diffraction and corroborated by 87Rb MAS NMR technique. Both samples also exhibited high thermal stability up to 500 °C, which is essential for optoelectronic applications. Rb2CuBr3 and Rb2CuCl3 display PL emission peaks at 387 nm and 400 nm with high PLQYs of ∼100% and ∼49%, respectively. Lastly, the first colloidal synthesis of quantum-confined rubidium copper halide-based nanocrystals opens up a new avenue to exploit their optical properties in lighting technology as well as water sterilisation and air purification.

Graphical abstract: Room temperature synthesis of low-dimensional rubidium copper halide colloidal nanocrystals with near unity photoluminescence quantum yield

Supplementary files

Article information

Article type
Communication
Submitted
12 Nov 2020
Accepted
09 Dec 2020
First published
10 Dec 2020

Nanoscale, 2021,13, 59-65

Room temperature synthesis of low-dimensional rubidium copper halide colloidal nanocrystals with near unity photoluminescence quantum yield

P. Vashishtha, T. J. N. Hooper, Y. Fang, D. Kathleen, D. Giovanni, M. Klein, T. C. Sum, S. G. Mhaisalkar, N. Mathews and T. White, Nanoscale, 2021, 13, 59 DOI: 10.1039/D0NR08093D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements