Jump to main content
Jump to site search


Plasmonic core-shell nano-heterostructures with temperature-dependent optical nonlinearity

Abstract

Plasmonics in bimetallic heterostructures have emerged as powerful tools for tunable ultrafast dynamics in nonlinear optical response. Despite numerous studies on the mechanism of nonlinearity tailoring with various influence factors, so far, a fundamental investigation of temperature-controlled nonlinearity modulation remains blank in heterostructure system. Here, we report on the fabrication of embedded Y@Ag/AgY core-shell nanostructures (CSNs) in fused silica for tunable nonlinearity with a laser-intensity-dependent temperature switch. The localized surface plasmon resonance (LSPR) in CSNs is substantially modified, resulting in the reconstruction of near field intensity for spatial temperature manipulation. In addition, the size effect and incident intensity dependence on temperature of CSNs reveal the improved laser tolerance with laser intensity threshold increased by 5.7 times. These results offer additional strategies for photothermal-effect-controlled nonlinearity modification in bimetallic heterostructures and unlock the potential for temperature-sensitive photonic devices in extreme conditions.

Back to tab navigation

Supplementary files

Article information


Submitted
11 Jul 2020
Accepted
10 Oct 2020
First published
12 Oct 2020

Nanoscale, 2020, Accepted Manuscript
Article type
Paper

Plasmonic core-shell nano-heterostructures with temperature-dependent optical nonlinearity

C. Pang, R. Li, N. Dong, Z. Li, J. Wang, F. Ren and F. Chen, Nanoscale, 2020, Accepted Manuscript , DOI: 10.1039/D0NR05176D

Social activity

Search articles by author

Spotlight

Advertisements