Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Design considerations for lithium-sulfur batteries: mass transport of lithium polysulfides


Irreversible loss of soluble lithium polysulfides (LiPSs) is a major obstacle deteriorating the performance of lithium-sulfur batteries. Multiple innovative approaches have recently been developed to resolve these LiPSs issues. Melt-diffusion of sulfur into porous carbon is a representative solution for preventing the diffusion out of LiPSs, which aims to coordinate the sulfur on the electrochemically active site, accordingly. However, it has been overlooked that the mass transport motion of LiPSs has a crucial role in achieving high-performance. In this paper, we highlight the importance of the mass transport of soluble sulfur in cathode structure by introducing various starting materials, i.e., solid sulfur using melt-diffusion and catholyte, using the 3-dimensional ordered macroporous carbon. The capacity of sulfur cathode using melt-diffusion is well conserved in carbon with small pores because LiPSs are slowly diffused away, however, the catholyte derived sulfur cathode shows superior performance in carbon with large pores due to their rapid mass transport. The comparison with the four different combinations that controlled pore size and mass transport reveals that proper selection of initial state of starting materials using porous carbons demonstrates the optimal cell performance.

Back to tab navigation

Supplementary files

Article information

14 Apr 2020
22 Jun 2020
First published
22 Jun 2020

Nanoscale, 2020, Accepted Manuscript
Article type

Design considerations for lithium-sulfur batteries: mass transport of lithium polysulfides

S. Kim, Y. Jeoun, J. Park, S. Yu and Y. Sung, Nanoscale, 2020, Accepted Manuscript , DOI: 10.1039/D0NR02936J

Social activity

Search articles by author