Jump to main content
Jump to site search

Issue 24, 2020
Previous Article Next Article

Molybdenum carbide and oxycarbide from carbon-supported MoO3 nanosheets: phase evolution and DRM catalytic activity assessed by TEM and in situ XANES/XRD methods

Author affiliations

Abstract

Molybdenum carbide (β-Mo2C) supported on carbon spheres was prepared via a carbothermal hydrogen reduction (CHR) method from delaminated nanosheets of molybdenum(VI) oxide (d-MoO3/C). The carburization process was followed by combined in situ XANES/XRD analysis revealing the formation of molybdenum oxycarbide Mo2CxOy as an intermediate phase during the transformation of d-MoO3/C to β-Mo2C/C. It was found that Mo2CxOy could not be completely carburized to β-Mo2C under a He atmosphere at 750 °C, instead a reduction in H2 is required. The β-Mo2C/C obtained showed activity and stability for the dry reforming of methane at 800 °C and 8 bar. In situ XANES/XRD evaluation of the catalyst under DRM reaction conditions combined with high resolution TEM analysis revealed the evolution of β-Mo2C/C to Mo2CxOy/C. Notably, the gradual oxidation of β-Mo2C/C to Mo2CxOy/C correlates directly with the increased activity of the competing reverse water gas shift reaction.

Graphical abstract: Molybdenum carbide and oxycarbide from carbon-supported MoO3 nanosheets: phase evolution and DRM catalytic activity assessed by TEM and in situ XANES/XRD methods

Back to tab navigation

Supplementary files

Article information


Submitted
12 Apr 2020
Accepted
08 Jun 2020
First published
09 Jun 2020

This article is Open Access

Nanoscale, 2020,12, 13086-13094
Article type
Paper

Molybdenum carbide and oxycarbide from carbon-supported MoO3 nanosheets: phase evolution and DRM catalytic activity assessed by TEM and in situ XANES/XRD methods

A. Kurlov, X. Huang, E. B. Deeva, P. M. Abdala, A. Fedorov and C. R. Müller, Nanoscale, 2020, 12, 13086
DOI: 10.1039/D0NR02908D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements