Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 21, 2020
Previous Article Next Article

A continuous stimuli-responsive system for NIR-II fluorescence/photoacoustic imaging guided photothermal/gas synergistic therapy

Author affiliations

Abstract

Nanosystems responsive to a tumor microenvironment (TME) have recently attracted great attention due to their potential in precision cancer theranostics. However, theranostic nanosystems with a TME-activated consecutive cascade for the accurate diagnosis and treatment of cancer have rarely been exploited. Herein, an activatable theranostic nanosystem (Bi2S3-Ag2S-DATS@BSA-N3 NYs) is designed and constructed on the basis of a one-pot biomineralization method and surface functional modification to improve second near-infrared (NIR-II) fluorescence/photoacoustic (PA) imaging-guided photothermal therapy (PTT)/gas therapy (GT). Based on enhanced penetration and retention (EPR) effect-mediated tumor accumulation, the tumor-overexpressed glutathione (GSH) can accelerate hydrogen sulfide (H2S) generation from the nanoparticles by reacting with the encapsulated diallyl trisulfide (DATS). Meanwhile, the in situ released H2S can be used not only for gas therapy, but also to start the reduction of –N3(−) to –NH2(+), thereby enhancing the tumor-specific aggregation of NYs. As a result, the activatable nanosystems with excellent tumor accumulation and biodistribution could achieve an accurate NIR-II/PA dual-modality imaging for guiding the synergistic anticancer efficacy (PTT/GT). Thus, this work provides a promising TME-mediated continuously responsive strategy for efficient anticancer therapy.

Graphical abstract: A continuous stimuli-responsive system for NIR-II fluorescence/photoacoustic imaging guided photothermal/gas synergistic therapy

Back to tab navigation

Supplementary files

Article information


Submitted
31 Mar 2020
Accepted
28 Apr 2020
First published
28 Apr 2020

Nanoscale, 2020,12, 11562-11572
Article type
Paper

A continuous stimuli-responsive system for NIR-II fluorescence/photoacoustic imaging guided photothermal/gas synergistic therapy

Z. Zheng, Q. Chen, R. Dai, Z. Jia, C. Yang, X. Peng and R. Zhang, Nanoscale, 2020, 12, 11562
DOI: 10.1039/D0NR02543G

Social activity

Search articles by author

Spotlight

Advertisements