Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Mesoporous carbon host material for stable lithium metal anode

Author affiliations

Abstract

Lithium (Li) metal is a promising anode material for next-generation batteries because of its low standard reduction potential (−3.04 V vs. SHE) and high specific capacity (3860 mA h g−1). However, it is still challenging to directly use Li metal as anode material in commercial batteries because of unstable Li dendrite formation and accumulated solid–electrolyte interphase. Possible methods that can suppress the unwanted formation of Li dendrites are (i) by increasing the electrode surface area and (ii) formation of porosity for confining Li. Here, we tested microporous (<2 nm) carbon and mesoporous (2–50 nm) carbon as host materials for the Li metal anode to avoid their degradation during cycling of lithium metal batteries (LMBs). Mesoporous carbon was more effective than microporous carbon as a host material to confine the Li metal and the lifetime of mesoporous carbon was more than twice as long as those of the Cu foil and microporous carbon. After confirmed better anode performance of mesoporous carbon host material, we applied Li-plated mesoporous carbon as an anode in a lithium–sulfur battery (Li–S) full cell. This research work suggests that mesopores, in spite of their low specific surface area, are better than micropores in stabilizing the Li metal and that a mesoporous host material can be applied to Li metal anodes for use in next-generation battery applications.

Graphical abstract: Mesoporous carbon host material for stable lithium metal anode

Back to tab navigation

Supplementary files

Article information


Submitted
20 Mar 2020
Accepted
05 May 2020
First published
20 May 2020

Nanoscale, 2020, Advance Article
Article type
Communication

Mesoporous carbon host material for stable lithium metal anode

J. Jeong, J. Chun, W. Lim, W. B. Kim, C. Jo and J. Lee, Nanoscale, 2020, Advance Article , DOI: 10.1039/D0NR02258F

Social activity

Search articles by author

Spotlight

Advertisements