Issue 15, 2020

A controlled nucleation and formation rate of self-assembled peptide nanofibers

Abstract

Self-assembling peptide matrixes are powerful platforms for encouraging tissue regeneration, but are usually formed within seconds and remain relatively static in both structure and function throughout their application. For the first time, we have shown that it is possible to extend the time it takes for peptide self-assembly so as to allow for the dynamic building of a self-assembled system over days, in the presence of an enzyme. Specifically, K5 and K10 sequences were conjugated, via a thrombin-specific cleavage domain NleTPR/SFL, to prevent the nanofiber formation and form stable nanoparticles composed of (RADA)4-GG-NleTPR/SFL-K5 and (RADA)4-GG-NleTPR/SFL-K10 that act as nucleation sites for reassembling. Upon introduction of thrombin, a model enzyme, this system showed an extremely slow rate of nanofiber formation in a parallel direction that is in sharp contrast to the well-known rapid assembly of (RADA)4 systems with random networks. These bioresponsive materials may provide a novel platform for utilizing long-term enzymatic profiles to form new nanofibers within an existing matrix over long therapeutic timeframes.

Graphical abstract: A controlled nucleation and formation rate of self-assembled peptide nanofibers

Supplementary files

Article information

Article type
Communication
Submitted
11 Mar 2020
Accepted
19 Mar 2020
First published
20 Mar 2020

Nanoscale, 2020,12, 8133-8138

A controlled nucleation and formation rate of self-assembled peptide nanofibers

L. Lu, D. Morrison and L. D. Unsworth, Nanoscale, 2020, 12, 8133 DOI: 10.1039/D0NR02006K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements