Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Ultrathin Two-Dimensional Vertical Ferroelectric Tunneling Junction based on CuInP2S6 Monolayer

Abstract

Ferroelectric (FE) materials, especially ABO3 FE perovskite oxides have been extensively studied for their important applications in memories, electronics and sensors. However, the integration of FE perovskite oxides into minimized memory and electronic devices have been impeded by the critical thickness limitation, as out-of-plane ferroelectricity in most FE perovskite oxides will disappear when the oxide thin film thickness is below a critical value. On the other side, CuInP2S6 (CIPS) nano-flake, a prototypical two-dimensional (2D) FE material has recently been demonstrated to display the stable out-of-plane ferroelectricity at atomic layer thickness by experiment, which offers a new candidate for developing FE device at 2D nanoscale regime. Herein, after investigation the structural and ferroelectric properties of 2D CIPS layers, especially the interactions between out-of-plane polarization and the corresponding depolarization field using first-principles calculations, we reveal that out-of-plane ferroelectricity can even persist in CIPS monolayer which is only 3.4 Å in thickness. Moreover, in order to explore the potential application of 2D FE CIPS layers as minimized FE devices, we design an ultrathin ferroelectric tunneling junction (FTJ) composed of graphene/CIPS monolayer/graphene vertical van der Waals (vdW) heterostructure. Our transport simulations based on non-equilibrium Green’s function formalism predict that such an ultrathin FTJ device can still exhibit the typical tunneling electroresistance (TER) effect, where tunneling current strongly depends on the direction of FE polarization. Our work not only elucidates the origin of stable out-of-plane ferroelectricity appeared in 2D CIPS layers, but also demonstrates the practical application of CIPS based 2D FTJ as a miniaturized, multi-functional and low-power consumption memory device for modern electronics.

Back to tab navigation

Supplementary files

Article information


Submitted
20 Feb 2020
Accepted
08 May 2020
First published
08 May 2020

Nanoscale, 2020, Accepted Manuscript
Article type
Paper

Ultrathin Two-Dimensional Vertical Ferroelectric Tunneling Junction based on CuInP2S6 Monolayer

M. Zhao, G. Gou, X. Ding and J. Sun, Nanoscale, 2020, Accepted Manuscript , DOI: 10.1039/D0NR01475C

Social activity

Search articles by author

Spotlight

Advertisements