Jump to main content
Jump to site search


Facile Synthesis of Yolk-Shell Structured Si/Graphene Balls as High-Performance Anode for Lithium-Ion Batteries

Abstract

Encapsulating silicon (Si) nanoparticles with graphene nanosheets in a microspherical structure is proposed to increase electrical conductivity and solve stability issues when using Si as an anode material in lithium-ion batteries (LIBs). Currently the main strategies to produce high-quality Si-graphene (Si@Gra) electrodes are (1) chemical vapor deposition (CVD) of graphene grown in situ on Si by hydrocarbon precursors and (2) encapsulating Si with a graphene oxide followed by postannealing. However, both methods require a high-temperature and are costly and time-consuming procedures, which hinders their mass scalability and practical utilization. Herein, we report a Si@Gra composite with a ball-like structure that is assembled by a facile spray drying process without a postannealing treatment. The graphene sheets are synthesized by an electrochemical exfoliation method from natural graphite. The resulting Si@Gra composite exhibits a unique yolk-shell structure, from which the ball-like morphology and the number of graphene layers in the Si@Gra composites are found to affect both the electric and ionic conductivity. The Si@Gra composites are found to increase the capacity of the anode and provide excellent cycling stability, which is attributed to the high electrical conductivity and mechanical flexibility of the layered graphene; additionally, a void space in the yolk-shelled ball structure inside the Si@Gra compensates for the Si volume expansion. As a result, the Si@few-layer graphene ball anode exhibits a high initial discharge capacity of 2882.3 mAh g-1 and a high initial coulombic efficiency of 86.9% at 0.2 A g-1. The combination of few-layer graphene sheets and the spray dry process can effectively be applied for large-scale production of yolk-shell structured Si@Gra composites as promising anode materials for use in high-performance LIBs.

Back to tab navigation

Supplementary files

Article information


Submitted
17 Feb 2020
Accepted
25 Mar 2020
First published
26 Mar 2020

Nanoscale, 2020, Accepted Manuscript
Article type
Paper

Facile Synthesis of Yolk-Shell Structured Si/Graphene Balls as High-Performance Anode for Lithium-Ion Batteries

A. Jamaluddin, B. Umesh, F. Chen, J. Chang and C. Y. Su, Nanoscale, 2020, Accepted Manuscript , DOI: 10.1039/D0NR01346C

Social activity

Search articles by author

Spotlight

Advertisements