Issue 28, 2020

Ultrahigh electrocatalytic activity with trace amounts of platinum loadings on free-standing mesoporous titanium nitride nanotube arrays for hydrogen evolution reactions

Abstract

Minimizing Pt loadings on electrocatalysts for hydrogen evolution reactions (HERs) is essential for their commercial applications. Herein, free-standing mesoporous titanium nitride nanotube arrays (TiN NTAs) were fabricated to serve as a substrate for Pt loadings in trace amounts. TiN NTAs were prepared by thermal treatment of anodic TiO2 NTAs at 750 °C for 3 h in a NH3 atmosphere. The uniform TiN NTAs showed an inner diameter of ∼80 nm and a length of ∼7 μm, with many mesoporous holes ranging from 5 to 10 nm in diameter on the nanotube walls. Pt species dissolved from the Pt counter electrode in electrochemical cycling were redeposited on the mesoporous TiN NTAs to produce Pt-TiN NTAs with an ultra-low Pt loading of 8.3 μg cm−2. Pt-TiN NTAs exhibited 15-fold higher mass activity towards HER than the benchmark 20 wt% Pt/C in acidic media, with an overpotential of 71 mV vs. RHE at a current density of 10 mA cm−2, a Tafel slope value of 46.4 mV dec−1 and excellent stability. The performance of Pt-TiN NTAs is also much better than that of Pt species deposited on non-mesoporous nanotube arrays due to the shortcuts originating from the mesoporous holes on the nanotube walls for electron and mass transfer.

Graphical abstract: Ultrahigh electrocatalytic activity with trace amounts of platinum loadings on free-standing mesoporous titanium nitride nanotube arrays for hydrogen evolution reactions

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2020
Accepted
24 Jun 2020
First published
24 Jun 2020

Nanoscale, 2020,12, 15393-15401

Ultrahigh electrocatalytic activity with trace amounts of platinum loadings on free-standing mesoporous titanium nitride nanotube arrays for hydrogen evolution reactions

J. Zhao, Y. Zeng, J. Wang, Q. Xu, R. Chen, H. Ni and G. J. Cheng, Nanoscale, 2020, 12, 15393 DOI: 10.1039/D0NR01316A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements