Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 15, 2020
Previous Article Next Article

Three-dimensional graphene-supported nickel disulfide nanoparticles promise stable and fast potassium storage

Author affiliations

Abstract

Nickel sulfide (NiS2) is generally regarded as an appropriate anode for manufacturing new-type potassium-ion batteries (PIBs), while the development and application of NiS2 are hampered by poor intrinsic electrical conductivity and huge volumetric change during potassiation/de-potassiation. Herein, we construct self-adaptive NiS2 nanoparticles confined to a three-dimensional graphene oxide (NiS2/3DGO) electrode via in situ sulfurization and self-assembly processes. The as-obtained NiS2/3DGO exhibits high reversible capacity (391 mA h gāˆ’1) and outstanding rate behavior (stable cycling at 1000 mA gāˆ’1) for PIBs. Furthermore, in situ X-ray diffractometry and ex situ Raman test results elucidate partially reversible transformation from the cubic NiS2 phase to the KxNiS2 intermediate, followed by generating a Ni0 and K2S4 product. This phenomenon is caused by the conversion reaction mechanism of NiS2 nanocrystals along with an amorphous phase transition during the initial cycle. Such understandings may shed new light on the application of metal sulfides and give directions to design novel electrodes with desirable structural stability and lifespan.

Graphical abstract: Three-dimensional graphene-supported nickel disulfide nanoparticles promise stable and fast potassium storage

Back to tab navigation

Supplementary files

Article information


Submitted
14 Feb 2020
Accepted
06 Mar 2020
First published
20 Mar 2020

Nanoscale, 2020,12, 8255-8261
Article type
Paper

Three-dimensional graphene-supported nickel disulfide nanoparticles promise stable and fast potassium storage

K. Han, J. Meng, X. Hong, X. Wang and L. Mai, Nanoscale, 2020, 12, 8255
DOI: 10.1039/D0NR01274B

Social activity

Search articles by author

Spotlight

Advertisements