Jump to main content
Jump to site search


Strong Plasmon-Exciton Coupling between Lithographically Defined Single Metal Nanoparticles and Monolayer WSe2

Abstract

Strong coupling between surface plasmons and excitons leads to the formation of plexcitons with new energy states, providing a versatile platform for a mass of frontier research subjects. Single plasmonic nanoparticles have recently attracted much attention for realizing strong coupling due to their small mode volume. However, the usually used chemically synthesized metal nanoparticles are unfavorable for accurately tailoring the surface plasmon resonances and adverse to the implementation of on-chip integration. Here, we report for the first time the realization of strong coupling between monolayer WSe2 and lithographically defined single metal nanoparticles. Focusing on gold nanobowties, the large Rabi splitting of 187 meV is achieved. The excitons around the nanogaps in the nanobowties contribute dominantly to the coupling strength, and the coupling strength is larger for smaller nanobowties due to the smaller mode volume. Moreover, the hybrid systems of monolayer WSe2 and gold nanoparticle monomers of nanorod, nanotriangle, and nanodisk are found to be close to satisfy the criterion of strong coupling. The strong plasmon-exciton coupling realized by single plasmonic nanostructures fabricated by advanced nanofabrication techniques and monolayer semiconductors can provide new opportunities for manipulating strong light-matter interaction at nanoscale and facilitate the development of plexciton-based nanodevices with ultrasmall footprints.

Back to tab navigation

Supplementary files

Article information


Submitted
06 Feb 2020
Accepted
25 Mar 2020
First published
25 Mar 2020

Nanoscale, 2020, Accepted Manuscript
Article type
Paper

Strong Plasmon-Exciton Coupling between Lithographically Defined Single Metal Nanoparticles and Monolayer WSe2

X. Yan and H. Wei, Nanoscale, 2020, Accepted Manuscript , DOI: 10.1039/D0NR01056A

Social activity

Search articles by author

Spotlight

Advertisements