Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 10, 2020
Previous Article Next Article

Recent progress in indoor organic photovoltaics

Author affiliations

Abstract

Among various potential applications of organic photovoltaics (OPVs), indoor power generation has great potential because of several advantages over outdoor light harvesting under 1 sun conditions. Commonly used indoor light sources have narrower emission spectra with lower intensity (by 3 orders of magnitude) as compared to the solar spectrum. Highly tunable optical absorption, large absorption coefficients, and small leakage currents under dim lighting conditions make OPVs promising candidates for indoor applications. For optimizing indoor photovoltaic materials and devices, several key issues (different from those under 1 sun conditions), such as developing new indoor photovoltaic materials and devices with suitable absorption spectra, large open-circuit voltages with low energy loss, minimized trap-mediated charge recombination and leakage currents, and device stability under indoor conditions, should be considered carefully. In this review, the recent progress in optimization of indoor photovoltaic materials and devices, and the key strategies to optimize the indoor photovoltaic characteristics will be summarized and discussed.

Graphical abstract: Recent progress in indoor organic photovoltaics

Back to tab navigation

Article information


Submitted
30 Jan 2020
Accepted
19 Feb 2020
First published
20 Feb 2020

Nanoscale, 2020,12, 5792-5804
Article type
Minireview

Recent progress in indoor organic photovoltaics

H. S. Ryu, S. Y. Park, T. H. Lee, J. Y. Kim and H. Y. Woo, Nanoscale, 2020, 12, 5792
DOI: 10.1039/D0NR00816H

Social activity

Search articles by author

Spotlight

Advertisements