Jump to main content
Jump to site search


Thermoelectric performance of nanostructured In/Pb codoped SnTe with band convergence and resonant level via a green and facile hydrothermal method

Abstract

SnTe is considered as a promising alternative to conventional high-performance thermoelectric PbTe, which inspired the thermoelectric community for a while. Here, we design a green, facile and low-energy-intensity hydrothermal route without involving any toxic or unstable chemicals to fabricate SnTe-based thermoelectric materials. The ultralow lattice thermal conductivity and enhanced thermoelectric performance are achieved via the combination of band engineering and nanostructuring. Enhanced Seebeck coefficient and power factor is induced by converging band structure and creating resonant levels due to Pb and In doping. More importantly, due to the reduced grain sizes, nanoparticles, and dual-atom point defect scattering, ultralow lattice thermal conductivity was obtained in the bulk samples fabricated by hydrothermal route. Benefiting from the enhanced power factor and significantly reduced thermal conductivity, the peak ZT is enhanced to ~0.7 in In/Pb codoped SnTe, a 60% improvement over pure SnTe.

Back to tab navigation

Supplementary files

Article information


Submitted
17 Jan 2020
Accepted
14 Feb 2020
First published
14 Feb 2020

Nanoscale, 2020, Accepted Manuscript
Article type
Paper

Thermoelectric performance of nanostructured In/Pb codoped SnTe with band convergence and resonant level via a green and facile hydrothermal method

W. Lu, T. He, S. Li, X. Zuo, Y. Zheng, X. Lou, J. Zhang, D. Li, J. Liu and G. Tang, Nanoscale, 2020, Accepted Manuscript , DOI: 10.1039/D0NR00495B

Social activity

Search articles by author

Spotlight

Advertisements