Jump to main content
Jump to site search


Unsupervised feature recognition in single-molecule break junction data

Abstract

Single-molecule break junction measurements deliver a huge number of conductance vs. electrode separation traces. Along such measurements the target molecules may bind to the electrodes in different geometries, and the evolution and rupture of the single-molecule junction may also follow distinct trajectories. The unraveling of the various typical trace classes is a prerequisite of the proper physical interpretation of the data. Here we exploit the efficient feature recognition properties of neural networks to automatically find the relevant trace classes. To eliminate the need for manually labeled training data we apply a combined method, which automatically selects training traces according to the extreme values of principal component projections or some auxiliary measured quantities, and then the network captures the features of these characteristic traces, and generalizes its inference to the entire dataset. The use of a simple neural network structure also enables a direct insight to the decision making mechanism. We demonstrate that this combined machine learning method is efficient in the unsupervised recognition of unobvious, but highly relevant trace classes within low and room temperature gold-4,4' bipyridine-gold single molecule break junction data.

Back to tab navigation

Article information


Submitted
16 Jan 2020
Accepted
12 Mar 2020
First published
25 Mar 2020

This article is Open Access

Nanoscale, 2020, Accepted Manuscript
Article type
Paper

Unsupervised feature recognition in single-molecule break junction data

A. Magyarkuti, N. Balogh, Z. Balogh, L. Venkataraman and A. Halbritter, Nanoscale, 2020, Accepted Manuscript , DOI: 10.1039/D0NR00467G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements