Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 13, 2020
Previous Article Next Article

Strategic modulation of energy transfer in Au-TiO2-Pt nanodumbbells: plasmon-enhanced hydrogen evolution reaction

Author affiliations

Abstract

Owing to the capacity of efficiently harvesting and converting incident energy, localized surface-plasmon resonance of noble metals was introduced into a metal–semiconductor design for promoting hydrogen evolution. In this study, a plasmonic nanodumbbell structure was employed to strategically modulate the energy transfer in the water reduction reaction. A maximum H2 evolution rate of 80 μmol g−1 h−1 was obtained in the Au-TiO2 nanodumbbells, and further improvement was achieved through surface modification with Pt nanoparticles functioning as active sites, leading to ∼4.3 times enhanced photocatalytic activity. Compared with similar nanostructures reported previously, the present superior photoactivity response is ascribed to the injection process of the energetic hot electrons generated from the excitation and decay of the longitudinal surface-plasmon resonance (LSPR) and transverse surface-plasmon resonance (TSPR) in the Au nanorods, which corresponds to the electric field distribution of the finite-difference-time-domain simulation. These intriguing results, originating from the positive synergistic effect of the plasmon and co-catalyst, demonstrated the mechanism of the plasmon-assisted photochemistry and provided a promising strategy for the rational design of novel plasmonic photocatalysts.

Graphical abstract: Strategic modulation of energy transfer in Au-TiO2-Pt nanodumbbells: plasmon-enhanced hydrogen evolution reaction

Back to tab navigation

Supplementary files

Article information


Submitted
16 Jan 2020
Accepted
27 Feb 2020
First published
29 Feb 2020

Nanoscale, 2020,12, 7035-7044
Article type
Paper

Strategic modulation of energy transfer in Au-TiO2-Pt nanodumbbells: plasmon-enhanced hydrogen evolution reaction

M. Zhu, Y. Wang, Y. Deng, X. Peng, X. Wang, H. Yuan, Z. Yang, Y. Wang and H. Wang, Nanoscale, 2020, 12, 7035
DOI: 10.1039/D0NR00441C

Social activity

Search articles by author

Spotlight

Advertisements