Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 17, 2020
Previous Article Next Article

A novel split mode TFBAR device for quantitative measurements of prostate specific antigen in a small sample of whole blood

Author affiliations

Abstract

Easy monitoring of prostate specific antigen (PSA) directly from blood samples would present a significant improvement as compared to conventional diagnostic methods. In this work, a split mode thin film bulk acoustic resonator (TFBAR) device was employed for the first time for label-free measurements of PSA concentrations in the whole blood and without sample pre-treatment. The surface of the sensor was covalently modified with anti-PSA antibodies and demonstrated a very high sensitivity of 101 kHz mL ng−1 and low limit of detection (LOD) of 0.34 ng mL−1 in model spiked solutions. It has previously been widely believed that significant pre-processing of blood samples would be required for TFBAR biosensors. Importantly, this work demonstrates that this is not the case, and TFBAR technology provides a cost-effective means for point-of-care (POC) diagnostics and monitoring of PSA in hospitals and in doctors’ offices. Additionally, the accuracy of the developed biosensor, with respect to a commercial auto analyser (Beckman Coulter Access), was evaluated to analyse clinical samples, giving well-matched results between the two methods, thus showing a practical application in quantitative monitoring of PSA levels in the whole blood with very good signal recovery.

Graphical abstract: A novel split mode TFBAR device for quantitative measurements of prostate specific antigen in a small sample of whole blood

Back to tab navigation

Supplementary files

Article information


Submitted
15 Jan 2020
Accepted
10 Apr 2020
First published
15 Apr 2020

This article is Open Access

Nanoscale, 2020,12, 9647-9652
Article type
Paper

A novel split mode TFBAR device for quantitative measurements of prostate specific antigen in a small sample of whole blood

E. Wajs, G. Rughoobur, K. Burling, A. George, A. J. Flewitt and V. J. Gnanapragasam, Nanoscale, 2020, 12, 9647
DOI: 10.1039/D0NR00416B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements