Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 11, 2020
Previous Article Next Article

Dehydrocoupling – an alternative approach to functionalizing germanium nanoparticle surfaces

Author affiliations

Abstract

Surface functionalization is an essential aspect of nanoparticle design and preparation; it can impart stability, processability, functionality, as well as tailor optoelectronic properties that facilitate future applications. Herein we report a new approach toward modifying germanium nanoparticle (GeNP) surfaces and for the first time tether alkyl chains to the NP surfaces through Si–Ge bonds. This was achieved via heteronuclear dehydrocoupling reactions involving alkylsilanes and Ge–H moieties on the NP surfaces. The resulting solution processable RR′2Si–GeNPs (R = octadecyl or PDMS; R′ = H or CH3) were characterized using FTIR, Raman, 1H-NMR, XRD, TEM, HAADF, and EELS and were found to retain the crystallinity of the parent GeNP platform.

Graphical abstract: Dehydrocoupling – an alternative approach to functionalizing germanium nanoparticle surfaces

Back to tab navigation

Supplementary files

Article information


Submitted
24 Dec 2019
Accepted
04 Feb 2020
First published
05 Feb 2020

Nanoscale, 2020,12, 6271-6278
Article type
Paper

Dehydrocoupling – an alternative approach to functionalizing germanium nanoparticle surfaces

M. A. Hossain, M. Javadi, H. Yu, A. N. Thiessen, N. Ikpo, A. O. Oliynyk and J. G. C. Veinot, Nanoscale, 2020, 12, 6271
DOI: 10.1039/C9NR10837H

Social activity

Search articles by author

Spotlight

Advertisements