Jump to main content
Jump to site search


Dehydrocoupling – an alternative approach to functionalizing germanium nanoparticle surfaces

Author affiliations

Abstract

Surface functionalization is an essential aspect of nanoparticle design and preparation; it can impart stability, processability, functionality, as well as tailor optoelectronic properties that facilitate future applications. Herein we report a new approach toward modifying germanium nanoparticle (GeNP) surfaces and for the first time tether alkyl chains to the NP surfaces through Si–Ge bonds. This was achieved via heteronuclear dehydrocoupling reactions involving alkylsilanes and Ge–H moieties on the NP surfaces. The resulting solution processable RR′2Si–GeNPs (R = octadecyl or PDMS; R′ = H or CH3) were characterized using FTIR, Raman, 1H-NMR, XRD, TEM, HAADF, and EELS and were found to retain the crystallinity of the parent GeNP platform.

Graphical abstract: Dehydrocoupling – an alternative approach to functionalizing germanium nanoparticle surfaces

Back to tab navigation

Supplementary files

Article information


Submitted
24 Dec 2019
Accepted
04 Feb 2020
First published
05 Feb 2020

Nanoscale, 2020, Advance Article
Article type
Paper

Dehydrocoupling – an alternative approach to functionalizing germanium nanoparticle surfaces

M. A. Hossain, M. Javadi, H. Yu, A. N. Thiessen, N. Ikpo, A. O. Oliynyk and J. G. C. Veinot, Nanoscale, 2020, Advance Article , DOI: 10.1039/C9NR10837H

Social activity

Search articles by author

Spotlight

Advertisements