Jump to main content
Jump to site search

Biomimetic Fabrication of Highly Ordered Laminae-trestle-laminae Structured Copper Aero-sponge


Light-weight metallic aero-sponges are highly desirable for electronics, energy storage, catalysis and environmental remediation. Although several fabrication methods have been developed, the mechanical strength as well as the structural fatigue resistance of the metallic aero-sponges remains unsatisfied. Loofah sponge is known for its mechanical strength and grease absorption due to its highly ordered hierarchical laminae-trestle-laminae (L-T-L) microstructure. Inspired by this structure-function relationship, we engineered highly ordered L-T-L structured copper aero-sponge by unidirectional freeze-casting of copper nanowires (CuNWs) and polyvinyl alcohols (PVA). By this approach, water-to-ice crystallization shaped the building blocks into vertically distributed micro-channels and horizontally arranged hollow-pores. The copper aero-sponge exhibits anisotropic mechanical elasticity with maximum tolerable compressive stress of 57 kPa, sustainable resilience at a strain of 75% as well as structure-induced hydrophobicity with water contact angle more than 130o. The elasticity and hydrophobicity of the copper aero-sponge are also superior to the mimicked loofah sponge and copper aero-sponge with disordered pore structure made by the conventional freeze-casting. This work can be extended to manufacture novel bioinspired aero-sponges/-gels with hierarchical ordered microstructures.

Back to tab navigation

Supplementary files

Article information

15 Dec 2019
17 Mar 2020
First published
18 Mar 2020

Nanoscale, 2020, Accepted Manuscript
Article type

Biomimetic Fabrication of Highly Ordered Laminae-trestle-laminae Structured Copper Aero-sponge

J. Huang, J. Zeng, H. wang, U. J. ETIM, B. Liang, E. B. Meteku, H. Li, Y. Wang, Z. Qiu, M. J. Rood and Z. Yan, Nanoscale, 2020, Accepted Manuscript , DOI: 10.1039/C9NR10593J

Social activity

Search articles by author