Issue 9, 2020

Moderate cooling coprecipitation for extremely small iron oxide as a pH dependent T1-MRI contrast agent

Abstract

Iron based nanomedicine (IBNM) has been one powerful diagnostic tool as a magnetic resonance imaging (MRI) contrast agent (CA) in the clinic for years. Conventional IBNMs are generally employed as T2-MRI CAs, but most of them are constrained in clinical indication expansion by magnetic susceptibility artifacts. In comparison, extremely small iron oxide (ESIO) with a core size less than 5 nm has demonstrated the T1-MRI effect, which provides prospects for a Gd-based agent alternative. Nevertheless, currently developed ESIOs for T1-MRI CAs always require harsh conditions such as a high temperature and high boiling point reagent. Moreover, very few of the currently developed ESIOs meet the stringent pharmaceutical standard. Herein, on the basis of a crystal nuclear precipitation–dissolution equilibrium mechanism and outer/inner sphere T1-MRI theory, monodisperse ESIOs with an average size of 3.43 nm (polydispersity index of 0.104) are fabricated using a moderate cooling procedure with mild coprecipitation reaction conditions. The as-synthesized ESIOs display around 3-fold higher T1 MRI signal intensity than that of commercial Ferumoxytol (FMT), comparable to that of Gd-based CAs in vitro. Additionally, the T1-MRI performance of the ESIOs is pH dependent and delivers bright signal augmentation. Eventually, the internalization into mesenchymal stem cells of the ESIO is realized in the absence of a transferring agent. Considering the identical structure and composition of the ESIOs as compared to that of FMT, they could meet the pharmaceutical criteria, thus providing great potential as T1-MRI Cas, for instance as stem cell tracers.

Graphical abstract: Moderate cooling coprecipitation for extremely small iron oxide as a pH dependent T1-MRI contrast agent

Supplementary files

Article information

Article type
Paper
Submitted
08 Dec 2019
Accepted
31 Jan 2020
First published
11 Feb 2020

Nanoscale, 2020,12, 5521-5532

Moderate cooling coprecipitation for extremely small iron oxide as a pH dependent T1-MRI contrast agent

B. Chen, Z. Guo, C. Guo, Y. Mao, Z. Qin, D. Ye, F. Zang, Z. Lou, Z. Zhang, M. Li, Y. Liu, M. Ji, J. Sun and N. Gu, Nanoscale, 2020, 12, 5521 DOI: 10.1039/C9NR10397J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements