Jump to main content
Jump to site search


Intrinsic Ferromagnetism with High Temperature, Strong Anisotropy and Controllable Magnetization in CrX (X = P, As) Monolayer

Abstract

2D ferromagnetic (FM) materials with high temperature, large magnetocrystalline anisotropic energy (MAE), and controllable magnetization are highly desirable for novel nanoscale spintronic applications. Herein by using DFT theory and Monte Carlo simulations, we demonstrate the possibility of realizing intrinsic ferromagnetism in 2D monolayer CrX (X = P, As), which are stable and can be exfoliated from their bulk phase with van der Waals layered structure. Following the Goodenough-Kanamori-Anderson (GKA) rule, the long-rang ferromagnetism of CrX is caused via 90º superexchange interaction along Cr-P(As)-Cr bonds. The Curie temperature of CrP is predicted to be 232 K based on Heisenberg Hamiltonian model, while Berezinskii-Kosterlitz-Thouless transition temperature of CrAs is as high as 855K. In contrast to other 2D magnetic materials, CrP monolayer exhibits a significant uniaxial MAE of 217 μeV/Cr originating from spin-orbit coupling. Analysis of MAE reveals that CrP favors easy out-of-plane magnetization, while CrAs prefers easy in-plane magnetization. Remarkably, hole and electron doping can switch magnetization axis in between in-plane and out-of-plane direction, allowing for the effective control of spin injection/detection in 2D structures. Our results offer an ideal platform for realizing 2D magnetoelectrics such as spin-FET in spintronics.

Back to tab navigation

Supplementary files

Article information


Submitted
05 Dec 2019
Accepted
06 Feb 2020
First published
06 Feb 2020

Nanoscale, 2020, Accepted Manuscript
Article type
Paper

Intrinsic Ferromagnetism with High Temperature, Strong Anisotropy and Controllable Magnetization in CrX (X = P, As) Monolayer

A. Ma, P. Wang and C. Zhang, Nanoscale, 2020, Accepted Manuscript , DOI: 10.1039/C9NR10322H

Social activity

Search articles by author

Spotlight

Advertisements