Issue 26, 2020

A new family of two-dimensional ferroelastic semiconductors with negative Poisson's ratios

Abstract

Two-dimensional (2D) materials with both ferroelasticity and negative Poisson's ratios have attracted intensive interest, but it is very rare to have both ferroelasticity and negative Poisson's ratios in a single material. Directional positive and negative Poisson's ratios in a switchable ferroelastic dielectric may enable non-destructive readout in ferroelastic data storage. Herein, we propose 14 kinds of stable 2D semiconductors: AB monolayers (A = Sc, Y, La; B = N, P, As, Sb, Bi) based on first-principles calculations. The band gaps of AB monolayers cover a wide range from 0.69 eV to 2.15 eV. Mechanical analysis reveals that these materials are flexible and 12 of 14 are predicted to possess an in-plane negative Poisson's ratio (NPR). Moreover, 10 of these 14 systems possess an out-of-plane NPR. More encouragingly, all AB monolayers are identified as 2D ferroelastic materials with reversible strains of around 5.94% to 20.30%. The ferroelastic switching barriers, mechanical properties and electronic structures of these materials are discussed in detail. Such outstanding properties make the AB monolayers very promising as switchable anisotropic 2D materials for nanoelectronics and micromechanical applications.

Graphical abstract: A new family of two-dimensional ferroelastic semiconductors with negative Poisson's ratios

Supplementary files

Article information

Article type
Paper
Submitted
28 Nov 2019
Accepted
14 Jun 2020
First published
15 Jun 2020

Nanoscale, 2020,12, 14150-14159

A new family of two-dimensional ferroelastic semiconductors with negative Poisson's ratios

J. Yuan, G. Mao, K. Xue, J. Wang and X. Miao, Nanoscale, 2020, 12, 14150 DOI: 10.1039/C9NR10114D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements