Jump to main content
Jump to site search


Nanostructured core–shell metal borides–oxides as highly efficient electrocatalysts for photoelectrochemical water oxidation

Author affiliations

Abstract

Oxygen evolution reaction (OER) catalysts are critical components of photoanodes for photoelectrochemical (PEC) water oxidation. Herein, nanostructured metal boride MB (M = Co, Fe) electrocatalysts, which have been synthesized by a Sn/SnCl2 redox assisted solid-state method, were integrated with WO3 thin films to build heterojunction photoanodes. As-obtained MB modified WO3 photoanodes exhibit enhanced charge carrier transport, amended separation of photogenerated electrons and holes, prolonged hole lifetime and increased charge carrier density. Surface modification of CoB and FeB significantly enhances the photocurrent density of WO3 photoanodes from 0.53 to 0.83 and 0.85 mA cm−2, respectively, in transient chronoamperometry (CA) at 1.23 V vs. RHE (VRHE) under interrupted illumination in 0.1 M Na2SO4 electrolyte (pH 7), corresponding to an increase of 1.6 relative to pristine WO3. In contrast, the pristine MB thin film electrodes do not produce noticeable photocurrent during water oxidation. The metal boride catalysts transform in situ to a core–shell structure with a metal boride core and a metal oxide (MO, M = Co, Fe) surface layer. When coupled to WO3 thin films, the CoB@CoOx nanostructures exhibit a higher catalytic enhancement than corresponding pure cobalt borate (Co-Bi) and cobalt hydroxide (Co(OH)x) electrocatalysts. Our results emphasize the role of the semiconductor–electrocatalyst interface for photoelectrodes and their high dependency on materials combination.

Graphical abstract: Nanostructured core–shell metal borides–oxides as highly efficient electrocatalysts for photoelectrochemical water oxidation

Back to tab navigation

Supplementary files

Article information


Submitted
18 Nov 2019
Accepted
13 Jan 2020
First published
13 Jan 2020

This article is Open Access

Nanoscale, 2020, Advance Article
Article type
Paper

Nanostructured core–shell metal borides–oxides as highly efficient electrocatalysts for photoelectrochemical water oxidation

C. Lu, P. R. Jothi, T. Thersleff, T. M. Budnyak, A. Rokicinska, K. Yubuta, R. Dronskowski, P. Kuśtrowski, B. P. T. Fokwa and A. Slabon, Nanoscale, 2020, Advance Article , DOI: 10.1039/C9NR09818F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements