Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 5, 2020
Previous Article Next Article

Optomechanical resonating probe for very high frequency sensing of atomic forces

Author affiliations

Abstract

Atomic force spectroscopy and microscopy are invaluable tools to characterize nanostructures and biological systems. State-of-the-art experiments use resonant driving of mechanical probes, whose frequency reaches MHz in the fastest commercial instruments where cantilevers are driven at nanometer amplitude. Stiffer probes oscillating at tens of picometers provide a better access to short-range interactions, yielding images of molecular bonds, but they are little amenable to high-speed operation. Next-generation investigations demand combining very high frequency (>100 MHz) with deep sub-nanometer oscillation amplitude, in order to access faster (below microsecond) phenomena with molecular resolution. Here we introduce a resonating optomechanical atomic force probe operated fully optically at a frequency of 117 MHz, two decades above cantilevers, with a Brownian motion amplitude four orders below. Based on Silicon-On-Insulator technology, the very high frequency probe demonstrates single-pixel sensing of contact and non-contact interactions with sub-picometer amplitude, breaking open current limitations for faster and finer force spectroscopy.

Graphical abstract: Optomechanical resonating probe for very high frequency sensing of atomic forces

Back to tab navigation

Supplementary files

Article information


Submitted
13 Nov 2019
Accepted
14 Jan 2020
First published
24 Jan 2020

Nanoscale, 2020,12, 2939-2945
Article type
Communication

Optomechanical resonating probe for very high frequency sensing of atomic forces

P. E. Allain, L. Schwab, C. Mismer, M. Gely, E. Mairiaux, M. Hermouet, B. Walter, G. Leo, S. Hentz, M. Faucher, G. Jourdan, B. Legrand and I. Favero, Nanoscale, 2020, 12, 2939
DOI: 10.1039/C9NR09690F

Social activity

Search articles by author

Spotlight

Advertisements