Issue 11, 2020

Polyornithine-based polyplexes to boost effective gene silencing in CNS disorders

Abstract

Gene silencing therapies have successfully suppressed the translation of target proteins, a strategy that holds great promise for the treatment of central nervous system (CNS) disorders. Advances in the current knowledge on multimolecular delivery vehicles are concentrated on overcoming the difficulties in delivery of small interfering (si)RNA to target tissues, which include anatomical accessibility, slow diffusion, safety concerns, and the requirement for specific cell uptake within the unique environment of the CNS. The present work addressed these challenges through the implementation of polyornithine derivatives in the construction of polyplexes used as non-viral siRNA delivery vectors. Physicochemical and biological characterization revealed biodegradability and biocompatibility of our polyornithine-based system and the ability to silence gene expression in primary oligodendrocyte progenitor cells (OPCs) effectively. In summary, the well-defined properties and neurological compatibility of this polypeptide-based platform highlight its potential utility in the treatment of CNS disorders.

Graphical abstract: Polyornithine-based polyplexes to boost effective gene silencing in CNS disorders

Supplementary files

Article information

Article type
Paper
Submitted
20 Jul 2019
Accepted
02 Dec 2019
First published
06 Dec 2019

Nanoscale, 2020,12, 6285-6299

Polyornithine-based polyplexes to boost effective gene silencing in CNS disorders

I. Conejos-Sánchez, E. Gallon, A. Niño-Pariente, J. A. Smith, A. G. De la Fuente, L. Di Canio, S. Pluchino, R. J. M. Franklin and M. J. Vicent, Nanoscale, 2020, 12, 6285 DOI: 10.1039/C9NR06187H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements