Issue 1, 2020

Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories

Abstract

Covering: up to 2019

As abundant natural products, isoprenoids have many useful industrial applications in the manufacturing of drugs, fragrances, food additives, colorants, rubber and advanced biofuels. The microbial production of isoprenoids has received much attention in recent years. Metabolic engineering approaches and synthetic biology have been utilized to reconstruct and optimize the metabolic pathways for isoprenoid production in cell factories. In this review, the recent advances in isoprenoid production using microbes are summarized, with a focus on MEP and MVA pathway engineering, downstream isoprenoid pathway engineering and microbial host engineering, which mainly includes central carbon pathway engineering. Finally, future perspectives for the improvement of isoprenoid production are discussed.

Graphical abstract: Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories

Article information

Article type
Review Article
Submitted
23 Feb 2019
First published
10 May 2019

Nat. Prod. Rep., 2020,37, 80-99

Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories

M. Li, F. Hou, T. Wu, X. Jiang, F. Li, H. Liu, M. Xian and H. Zhang, Nat. Prod. Rep., 2020, 37, 80 DOI: 10.1039/C9NP00016J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements