Jump to main content
Jump to site search


Combinatorial library generation, molecular docking and molecular dynamics simulations for enhancing the isoflavone scaffold in phosphodiesterase inhibition

Abstract

Isoflavones are listed among the most widely studied natural compounds in light of their several biological properties, one of which consists in their ability of inhibiting phosphodiesterases (PDEs). The enzymes from this class are deputed to the regulation of 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) levels in the central and in the peripheral nervous systems (CNS, PNS), thus affecting several downstream pathways involved in different diseases. In this work, an extensive set of semi-synthetically obtainable molecules was generated by a combinatorial approach starting from the isoflavone scaffold with the aim of optimizing the interaction with the macromolecule and identifying new putative hit compounds. More specifically, a docking protocol was developed, validated and then adopted to screen the generated compounds towards PDE4, PDE5 and PDE9, three isoforms which are known to be involved in neurodegenerative disorders. Then, a structure based analysis was enrolled to guide the identification of the most promising hits basing on the interaction with specific residues in the metal binding pocket of PDEs which are proved to be crucial for triggering enzymatic inhibition. Lastly, molecular dynamics (MD) simulations were conducted to study with greater accuracy the binding of these compounds with the considered macromolecules. This study led to the set up and validation of a multi-technique computational approach for efficiently screening molecular structures towards PDE isoforms involved in neurodegeneration, and may pave the way for a more targeted development of new, semi-synthetic potential PDE inhibitors derived from the isoflavone scaffold.

Back to tab navigation

Article information


Submitted
19 May 2020
Accepted
09 Oct 2020
First published
12 Oct 2020

New J. Chem., 2020, Accepted Manuscript
Article type
Paper

Combinatorial library generation, molecular docking and molecular dynamics simulations for enhancing the isoflavone scaffold in phosphodiesterase inhibition

E. Oselladore, A. Ongaro, G. Zagotto, M. Memo, G. Ribaudo and A. Gianoncelli, New J. Chem., 2020, Accepted Manuscript , DOI: 10.1039/D0NJ02537B

Social activity

Search articles by author

Spotlight

Advertisements