Issue 26, 2020

Highly stable and Pb-free bismuth-based perovskites for photodetector applications

Abstract

Herein, we report the synthesis of highly stable, Pb-free bismuth iodide (BiI3 or BI), stoichiometric methylammonium bismuth iodide [(CH3NH3)3Bi2I9 or MA3Bi2I9 or s-MBI] and non-stoichiometric methylammonium bismuth iodide [(CH3NH3)2BiI5 or MA2BiI5 or Ns-MBI] perovskite thin films for photodetector applications. These films are synthesized at room temperature by a single step solution process spin coating method. The structural, optical, and morphological properties of these films were investigated using different characterization techniques such as XRD, Raman spectroscopy, FE-SEM, UV-Visible spectroscopy, etc. Formation of BI, s-MBI and Ns-MBI thin films is confirmed by XRD and Raman spectroscopy measurements. XRD analysis reveals that BI has a hexagonal crystal structure and a P63/mmc hexagonal space group for s-MBI and Ns-MBI. The optical properties of BI thin films show a high absorption coefficient (∼104 cm−1) and a band gap of ∼1.74 eV. Similarly, s-MBI films have a high absorption coefficient (∼103 cm−1) and an indirect band gap of ∼1.8 eV. Moving from s-MBI to Ns-MBI, the value of absorption coefficient is ∼103 cm−1 and the band gap corresponds to ∼2 eV. Finally, photodetectors based on the synthesized BI, s-MBI and Ns-MBI perovskites have been directly fabricated on FTO substrates. All photodetectors exhibited highly stable photo-switching behaviour along with excellent photoresponsivity and detectivity, with a fast response and recovery time. Our work demonstrates that Pb-free BI, s-MBI and Ns-MBI perovskites have great potential in the future for realizing stable photodetectors.

Graphical abstract: Highly stable and Pb-free bismuth-based perovskites for photodetector applications

Article information

Article type
Paper
Submitted
15 Apr 2020
Accepted
11 Jun 2020
First published
18 Jun 2020

New J. Chem., 2020,44, 11282-11290

Highly stable and Pb-free bismuth-based perovskites for photodetector applications

A. Bhorde, S. Nair, H. Borate, S. Pandharkar, R. Aher, A. Punde, A. Waghmare, P. Shinde, P. Vairale, R. Waykar, V. Doiphode, V. Jadkar, Y. Hase, S. Rondiya, N. Patil, M. Prasad and S. Jadkar, New J. Chem., 2020, 44, 11282 DOI: 10.1039/D0NJ01806F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements