Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Facile synthesis of ultrathin NiSnO3 nanoparticles for enhanced electrochemical detection of antibiotic drug in water bodies and biological samples

Abstract

The highly sensitive real time detection of antibiotic drugs (nitrofurantoin; NFT) has drawn a significant research theme, due to the extensive use of antibiotics may cause a series threats to environmental as well as living things. In this work, a novel nickel stannite (NiSnO3; NSO) was developed via a facile sonochemical synthetic route and used as a synergistic electrocatalyst for the electrochemical determination of NFT for the first time. The structure of the as prepared material was scrutinized by various physicochemical techniques. The impedance analysis proves that the ionic conductivity of NSO was significantly improved by the insertion of nickel ion into the tin oxide lattice. The resultant electrocatalyst exhibits a superior electrocatalytic behaviour toward NFT with a low detection limit (3 nM), broad linearity (6.6 nM-0.5 µM and 0.5 µM-466.6 µM) and rapid response (2 s), due to the greater number of active sites and synergistic effect of NSO. In addition, the NSO nanoparticles showed excellent selectivity over the various possible interferents, good operational stability, adequate reproducibility and repeatability towards NFT detection. Besides, the practical feasibility of the developed NFT sensor based on NSO was successfully applied for the monitoring of NFT in real water and biological samples with acceptable results. Hence, the developed NSO nanoparticles could serve as an auspicious electrode modifier in the field of electrochemical sensors.

Back to tab navigation

Article information


Submitted
19 Mar 2020
Accepted
29 Apr 2020
First published
13 May 2020

New J. Chem., 2020, Accepted Manuscript
Article type
Paper

Facile synthesis of ultrathin NiSnO3 nanoparticles for enhanced electrochemical detection of antibiotic drug in water bodies and biological samples

A. Muthaiah, S. Subbarayan, S. M. Chen, T. Chen and X. Zheng, New J. Chem., 2020, Accepted Manuscript , DOI: 10.1039/D0NJ01375G

Social activity

Search articles by author

Spotlight

Advertisements