Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Fischer–Tropsch synthesis using a cobalt catalyst supported on graphitic carbon nitride

Author affiliations

Abstract

In the present work, the performance of cobalt catalysts on a graphitic carbon nitride (g-C3N4) support in Fischer–Tropsch synthesis (FTS) is studied. The g-C3N4 support was synthesized using three different precursors: urea (GNU), melamine (GNM) and a urea–melamine mixture (GNMU). Then, the cobalt catalysts were prepared by an impregnation method. The obtained catalysts were carefully characterized by nitrogen adsorption–desorption, FTIR, TGA, TPR, FESEM, TEM, HRTEM and XRD techniques. The TPR results show that nitrogen atoms in the g-C3N4 support improved cobalt reduction. FTS activity and product selectivity studies show that the Co/GNU catalyst with the smallest cobalt particle size has the greatest cobalt time yield (CTY). The FTS activity and selectivity towards light products of cobalt supported on g-C3N4 are higher than cobalt supported on carbon nanotubes (Co/CNTs). It is concluded that the electron-donor properties of nitrogen atoms in the g-C3N4 support increased the reducibility of cobalt oxides in the reduction process and also caused the formation of short-chain hydrocarbons in FTS.

Graphical abstract: Fischer–Tropsch synthesis using a cobalt catalyst supported on graphitic carbon nitride

Back to tab navigation

Article information


Submitted
28 Feb 2020
Accepted
18 Mar 2020
First published
18 Mar 2020

New J. Chem., 2020, Advance Article
Article type
Paper

Fischer–Tropsch synthesis using a cobalt catalyst supported on graphitic carbon nitride

H. Oliaei Torshizi, A. Nakhaei Pour, A. Mohammadi and Y. Zamani, New J. Chem., 2020, Advance Article , DOI: 10.1039/D0NJ01041C

Social activity

Search articles by author

Spotlight

Advertisements